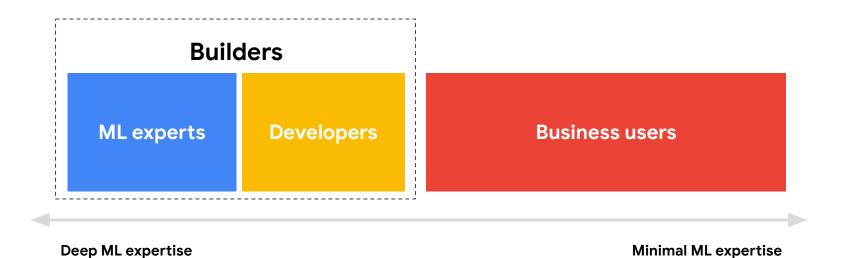


ML on structured data with GCP

Jérémie Gomez Data consultant, Professional Services

Topics


- 1 Machine learning landscape
- 2 AutoML Tables
- 3 BigQuery ML


Machine learning landscape

Who can actually use Al today?

Very few people can create custom ML models today

Ready-to-deploy AI solutions plug into your existing technology & workflows. No AI or ML expertise required.

Document Understanding Al

Easily, and cost-effectively, extract valuable insights from your documents.


Contact Center Al

Efficiently provide world-class customer support.

Retail

Drive sales with hyper-personal recommendations and visual product search.

Making AI easier for developers

Sight

Video Intelligence

AutoML Vision

AutoML Video Intelligence

Language

Natural Language

AutoML Translation

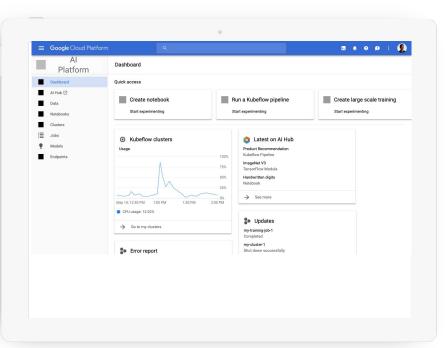
AutoML Natural Language

Conversation

Text-to-Speech

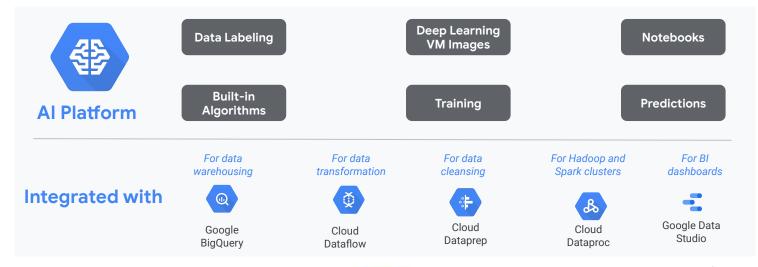
III Speech-to-Text

Structured Data


What is Al Platform?

End-to-end, code-based development environment for Al inside GCP console

Built on Kubeflow, Google's open-source project, offers an integrated tool chain from data engineering to model deployment with "no lock-in"


Allows you to run on-premises or on Google Cloud without significant code changes.

Access to cutting-edge Google Al technology like TensorFlow, TPUs, and TFX tools as you deploy your Al applications to production.

What is included?

Al Hub

AutoML Tables

Months to create and deploy an ML model

Export data

2

Regression in Excel/Sheets

Export small amounts of data from BQ

Run linear regression

Get a model with low accuracy due to small data for training

Go back and get more data to create new features, and improve performance

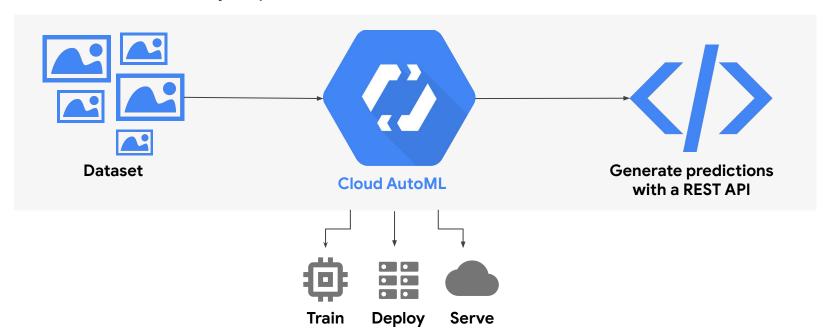
Repeat. It's hard, so you stop after a few iterations

TensorFlow or scikit-learn

Only an expert data scientist can do this

Export small amounts of data from BQ

Create frames of data for use with TensorFlow Build model


Go back and get more data to create features, and improve performance

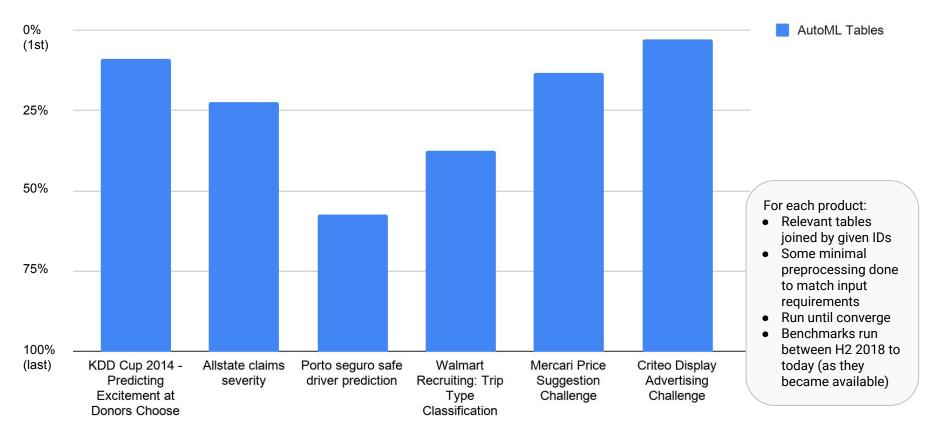
Repeat. It's hard, so you stop after a few iterations

Cloud AutoML to the rescue

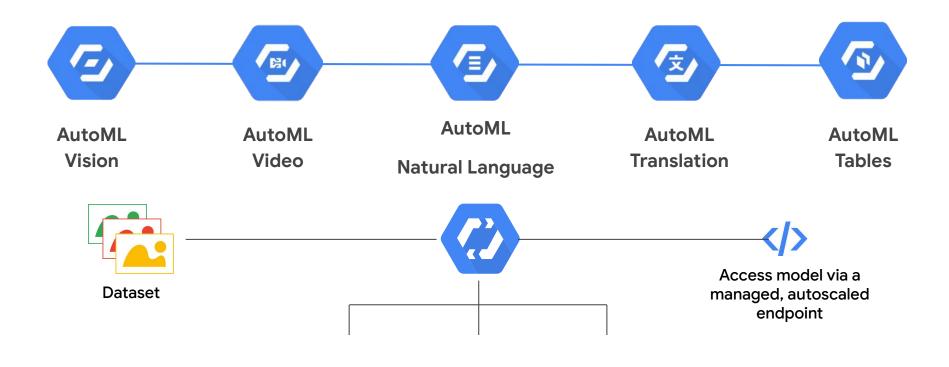
ML that creates ML for your problem

Cloud AutoML to the rescue

ML that creates ML for your problem



Higher model accuracy and faster time to market


- Limited ML expertise needed to build custom models
- Data-first approach with simple graphical user interface

Leading to increased model quality

% ranking on Kaggle private leaderboard

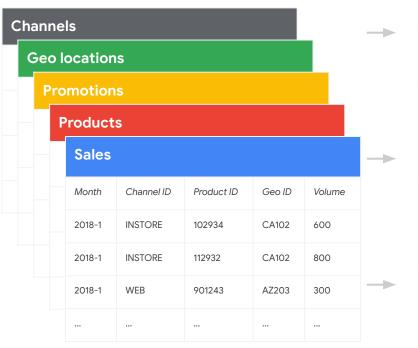
AutoML products

Deploy

Serve

Train

ML on structured data: 101


Historic offers from marketplace.xyz											
ID	Geo	Domain	Posted on:	Title	Description	Category	Brand	•••	Price sold:		
104	US	marketA	Feb 1, 2018	"Dark red"	"Try this soft"	["A, B,"]	Nike		\$92		
204	US	marketB	Jan 20, 2018	"Women's"	"Medium-size"	["A, B,"]	Adidas		\$58		
302	US	marketA	Jan 12, 2018	"Running"	"All-terrain"	["A, B,"]	Asics		\$85		
352	EU	marketB	Feb 13, 2018	"Running"	"All-terrain"	["A, B,"]	Puma		?		

AutoML Tables

Start with raw tabular data

Build state-of-the-art models automatically

 Enriched treatment for a wide range of data primitives (#s, text, etc.)

 Gracefully handle datasets at BigQuery scale (currently up to 10TB)

 Code-less graphical UI for the full ML lifecycle Demand forecasting

Stock-out prediction

Price optimization

Customer lifetime value

Predict customer conversion / churn

Fraud prevention

and more...

Handle data as found in the wild

Automated feature engineering for:

Timestamps

Classes

Lists

Strings

Nested fields

Resilient to + guardrails for:

Imbalanced data

Highly correlated features

Missing values

High cardinality features (like IDs)

Outliers

Automatically search through Google's whole model zoo...

Linear, logistic

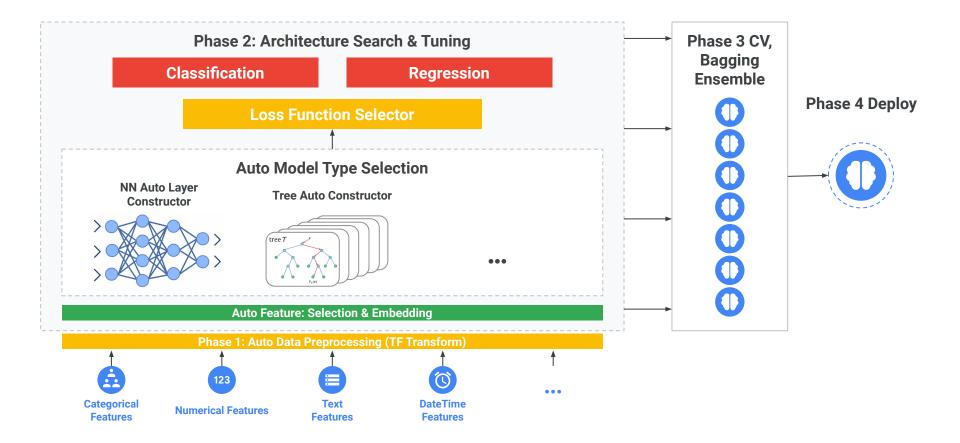
Feedforward DNN

Wide and Deep NN

Gradient Boosted Decision Tree (GBDT)

DNN + GBDT Hybrid

Adanet ensemble


Neural + Tree Architecture Search

...and more!

...including the latest methods from Google Brain

Demo

Importing data into BigQuery, creating a dataset and a model with AutoML Tables

BigQuery ML

Google Cloud

What is BigQuery?

Fully Managed, Zero-Ops Data Warehouse

Petabyte-Scale

Industry-Standard SQL

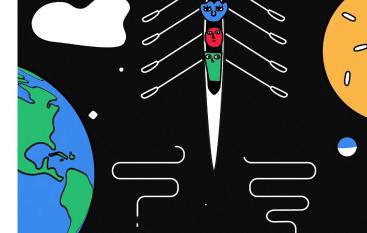
Automatically Encrypted, Durable, and Highly Available

Virtually Unlimited Resources

BigQuery ML

Execute ML initiatives
without moving data from
BigQuery

lterate on models in SQL in BigQuery to increase development speed


Automate common ML tasks and hyperparameter tuning

Behind the scenes

Through two lines of SQL

- Leverage BigQuery's processing power to build a model
- Auto-tuned learning rate
- Auto-split of data into training and test
- Null imputation
- Standardization of numeric features
- One-hot encoding of strings
- Class imbalance handling

Current BQML Model Types (with betas)

SQL interface to Machine Learning

- Data scientists can:
 - Build 100 models in a week
 - Not spend time on data ETL and setup of multiple tools
 - Experiment in BigQuery, export models to CMLE for further tuning
- Data analysts can:
 - Build ML models with knowledge of basic ML concepts.
 - Easily utilize domain and data knowledge for ML models

Prediction

- BigQuery for batch prediction on structured data
- Export to Cloud AI Platform for online prediction
- Interactive prediction on BI dashboards through BigQuery

AutoML Tables vs. BigQuery ML

These are complementary, not competing products

AutoML Tables

For problems that require best-in-class accuracy that is fully automated

Discovers the best model for the problem

Code-less graphical UI

Consistent experience for users that used other AutoMLs

BigQuery ML

For problems that require fast experimentation and development time, and explainability (e.g., simpler models like logistic regression, trees)

Supports a variety of models

SQL interface

Will support AutoML Tables as a model_type in the future

Demo

BigQuery ML training, evaluation and prediction

Model type	BigQuery ML	AutoML	Custom model
How	SQL in BigQuery for ML on structured data	AutoML uses neural architecture search and best-of-class model architectures for the specific problem	Machine learning libraries (scikit-learn, Tensorflow), trained on Cloud ML Engine
Best if you are a	Data analyst who can wrangle data with SQL	Developer who can create the dataset in the required format	ML Engineer who knows Python and knows deep learning, NLP techniques
How long it takes an experienced practitioner	About an hour	About a day	A week to a month
Most of this time is spent in	Writing SQL	Waiting for job to finish	Coding Python and experimentation with ML
Cloud computing costs	Low	Medium	Medium to high depending on size of data, number of experiments, etc.
Accuracy	Moderate to high, mostly depending on the size of your dataset	High	Low if you don't know what you are doing; extremely high if you employ appropriate architectures and have a large-enough dataset

Thank you!

